PKS 0537-286

From Wikipedia, the free encyclopedia
PKS 0537-286
PKS 0537-286 taken by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationColumba
Right ascension05h 39m 54.281s
Declination-28d 39m 55.95s
Redshift3.104000
Heliocentric radial velocity930,556 km/s
Distance11.4 Gly (light travel time distance)
Apparent magnitude (V)0.54
Apparent magnitude (B)0.43
Surface brightness18.1
Characteristics
TypeFSQR;Blazar
Other designations
PMN J0539-2839, BZQ J0539-2839, PGC 2824447, MRC 0537-286, NVSS J053954-283956, PKS B0537-286, OG -263, TXS 0537-286, 2FGL 0539.3-2841, IRCF J053954.2-283955, 2XMM J053954.2-283956, RX J0539.9-2839

PKS 0537-286 (referred to QSO 0537-286), also known as QSO B0537-286, is a quasar located in the constellation Columba. With a redshift of 3.104, the object is located 11.4 billion light years away[1] and belongs to the flat spectrum radio quasar blazar subclass (FSQR).[2] It is one of the most luminous known high-redshift quasars.[3]

Observation history[edit]

First detected at radio frequencies in 1975, PKS 0537-286 was observed at X-rays by the Einstein observatory.[4] It was later studied by ASCA,[5] ROSAT,[6] XMM[7] and subsequently Swift.[8] These observations showed PKS 0537-286 as extremely luminous quasar ( Lx=1047 erg s−1 in the 0.1-2 keV range) with a particularly hard spectrum (r = 1 measured by Swift/BAT), which in the γ-ray band, it shows an energy flux of (1.44 ± 0.006) × 10−11 erg cm−2 s−1 in the fourth catalogue of Fermi-LAT active galactic nuclei.[9] A weak iron K emission line and reflection features is also found in PKS 0537-286. Moreover, Sowards-Emmerd et al. (2004)[10] identified the quasar as probable counterpart of the EGRET source 3EG J0531-2940.[11]

Characteristics[edit]

PKS 0537-286 is the brightest blazar beyond z = 3.0.[2] It shows characteristic properties of blazars, such as (rapid variability, strong polarization and high brightness) which are widely attributed to a powerful relativistic jet oriented close to the line of sight.[12]

Moreover, in several occasions, γ-ray flares were observed when the daily flux was above 10−6 photon cm−2 s−1. This makes PKS 0537-286 the most distant γ-ray flaring blazar.[13] The broad-band emission from PKS 0537-286 was successfully modelled within a one-zone synchrotron and external inverse Compton scenario where the excess in optical and ultraviolet bands was interpreted as emission from bright thermal accretion disc.[2] Moreover, PKS 0537-286 shows an emission redshift of 3.11, a prominent absorption system at a redshift of 2.976, and a strong discontinuity at the Lyman-continuum edge in the absorption system.[3]

Through the data collected ten years from the Fermi Large Area Telescope together with Swift UVOT/XRT archival data taken between 2005 and 2017, researchers found that the γ -ray band, above the peak flux of 100 MeV, Fγ = (6 23 ± 0 56) ∙ 10-7 photon cm-2 s-1, corresponds to Lγ = 2 46 ∙ 1049 erg s-1 isotropic γ -ray luminosity. From the analysis, the X-ray emission in PKS 0537-286, is characterized by a significantly hard photon index, ΓX-ray ≤ 1.3, and an X-ray flux of 4 ∙ 10-12 erg cm-2 s-1, which is almost constant over 12 years.[14]

Further observations[edit]

During the 2006 to 2008 multiwavelength campaign, the source of PKS 0537-286 was monitored by INTEGRAL. Since the Swift/BAT light curve in PKS 0537-286 showed a constant flux level over nine months of exposure, the INTEGRAL pointings were proposed in non-contiguous time intervals.[15] In order to cover simultaneous X-ray and ultraviolet ranges, further observations occurred on October 27, 30, 31 in 2006 and were executed by Swift/XRT observations on February 10 and 12, 2008. Simultaneously, REM, GROND, and Palomar 60-inch telescope performed photometry. RXTE PCA on the other hand, observed PKS 0537-286 on November 1, 2006, in the 3-20 keV band.[2]

Fermi-LAT observation and data analysis

In another observation conducted by Fermi-LAT, researchers generated two different methods of light curves to investigate the variability pattern of the source. Initially, the whole time interval was divided into 5-d intervals and the photon index and flux of PKS 0537-286 were estimated by the unbinned analysis method from GTLIKE tool.[16] To obtain a deeper insight into the γ-ray flux evolution in time, the adaptively binned light curve was computed.[17] Through this method, the bin widths above the optimal energy (Eopt) are adjusted to have fixed uncertainty. In case of flux increasing, the shorter intervals are estimated, whereas in the quiescent/normal states, time bins are wider. This method has been proven to be a powerful tool in finding flaring periods in blazars.[18][19]

From these observations, the light curve of (>Eopt = 168.19 MeV) the γ-ray flux shows an average level of (1 − 3) × 10−8 photon cm−2 s−1 with no significant changes up to MJD 57740. while then, in several occasions, the γ-ray flux increased substantially. The light curve with 5-d (>100 MeV) and adaptive bins (>Eopt = 168.19 MeV) for the period when the source was active in the γ-ray band are shown correspondingly. The first flaring period was between MJD 57876–57883 when the flux increased with a maximum of (5.26 ± 1.13) × 10−7 photon cm−2 s−1. Starting from MJD 59170, the source entered an active emission state with several bright flaring periods between MJD 59204–59233, MJD 59301–59411, and MJD 59721–59738. The maximum γ-ray flux of the source, (6.32 ± 1.11) × 10−7 photon cm−2 s−1 was also observed in these γ-ray flaring periods.[16]

NUSTAR and data analysis

A hard X-ray telescope sensitive in the 3–79 keV energy range,[20] NuSTAR with two focal plane modules (FPMs), FPMA, and FPMB, observed PKS 0537-286 on December 28, 2020 (MJD 59211.99) and on October 24, 2020 (MJD 59146.17) for 97.1 and 24.3 ks, respectively.

These data from NuSTAR were analyzed applying the standard procedure and using NuSTAR spectra tool developed in 2022 according to Middei et al. (2022).[21] The spectra script downloads used XIMAGE package to precisely locate the source's coordinates and then extracts high-level scientific products for the detected sources using NUPRODUCTS routine. The script automatically sets the source extraction region radius depending on the source counts (usually in the range of 30–70 arcsec). The background is computed in an annulus centred on the source with a minimum separation of 50 arcsec between the inner and outer radii. Then, a spectral analysis is performed using the XSPEC package adopting Cash statistics.[22]

From these analysis, the X-ray photon index of PKS 0537−286 is the same in both observations – 1.26 ± 0.06 and 1.26 ± 0.02 on MJD 59146.17 and MJD 59211.99, respectively. The X-ray flux between 3 and 10 keV measured on MJD 59146.17 is F3–10 keV = (2.72 ± 0.06) × 10−12 erg cm−2 s−1 and on MJD 59211.99, it increased by about a factor of 2, F3–10 keV = (5.10 ± 0.04) × 10−12 erg cm−2 s−1. Similarly, the flux between 10 and 30 keV also increased in these two observations, being correspondingly F10–30 keV = (5.79 ± 0.20) × 10−12 erg cm−2 s−1 and F10–30 keV = (1.08 ± 0.01) × 10−11 erg cm−2 s−1. This shows that the source in the 3.0–30 keV range was in an enhanced state on 2020 December 28.[16]

At z = 3.10, PKS 0537-286 is one of the most powerful FSRQs in the extragalactic γ-ray sky; the time-averaged γ-ray luminosity of the source is 1.90 × 1048 erg s−1 (assuming a distance of 27.08 Gpc). However, in several occasions, the source shows bright γ-ray flares when the flux substantially increases and the spectrum hardens. Fig. 2 left-hand panel shows the γ-ray luminosity of PKS 0537-286 versus the photon index. During the bright periods, the luminosity increases, being above 1049 erg s−1; the maximum γ-ray luminosity corresponds to 6.14 × 1049 erg s−1. Among 113 adaptively binned intervals, the source luminosity was above 1049 erg s−1 in 25 intervals amounting 61.8 d when extreme γ-ray luminosity was observed. For blazars like PKS 0537-286, such trends are frequently observed in different bands[23][24] which can be interpreted as interplay between acceleration and cooling of the electrons.[16]

Black hole[edit]

The supermassive black hole in PKS 0537-286 is estimated to be at 2 billion solar masses, with its Eddington luminosities being a large fraction of accretion. This is all thanks to a study inferred from the optical-ultraviolet bump, making PKS 0537-286 to contain one of the largest black holes.[25]

From an article published in 2006, researchers from Goddard Institute for Space Studies and the Merate Observatory in Italy, studying blazars, found out that the particle jet from the black hole of PKS 0537-286, contains the same mass of Jupiter. The jet is revealed to being blasted out into intergalactic space, which is enormous amount of energy leaving the black hole according to Fabrizio Tavecchio, one of the researchers. This finding is a major step towards determining how jets are created which is a goal for the Gamma-ray Large Area Space Telescope, or GLAST, planned for launch in the fall 2007.[26]

References[edit]

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-23.
  2. ^ a b c d Bottacini, E.; Ajello, M.; Greiner, J.; Pian, E.; Rau, A.; Palazzi, E.; Covino, S.; Ghisellini, G.; Krühler, T.; Yoldaş, A. Küpcü; Cappelluti, N.; Afonso, P. (2010-01-01). "PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe". Astronomy & Astrophysics. 509: A69. arXiv:0910.2463. Bibcode:2010A&A...509A..69B. doi:10.1051/0004-6361/200913260. ISSN 0004-6361.
  3. ^ a b Wright, A. E.; Peterson, B. A.; Jauncey, D. L.; Condon, J. J. (1978-12-01). "PKS 0537-286: a high-redshift QSO with an extreme Lyman-continuum cutoff". The Astrophysical Journal. 226: L61–L64. Bibcode:1978ApJ...226L..61W. doi:10.1086/182831. ISSN 0004-637X.
  4. ^ Zamorani, G.; Henry, J. P.; Maccacaro, T.; Tananbaum, H.; Soltan, A.; Avni, Y.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.; Condon, J. J. (1981-04-01). "X-ray studies of quasars with the Einstein Observatory II". The Astrophysical Journal. 245: 357–374. Bibcode:1981ApJ...245..357Z. doi:10.1086/158815. ISSN 0004-637X.
  5. ^ Cappi, M.; Matsuoka, M.; Comastri, A.; Brinkmann, W.; Elvis, M.; Palumbo, G. G. C.; Vignali, C. (1997-03-01). "ASCA and ROSAT X-Ray Spectra of High-Redshift Radio-loud Quasars". The Astrophysical Journal. 478 (2): 492–510. arXiv:astro-ph/9610204. Bibcode:1997ApJ...478..492C. doi:10.1086/303817. ISSN 0004-637X.
  6. ^ Fiore, Fabrizio; Elvis, Martin; Giommi, Paolo; Padovani, Paolo (1998-01-01). "X-Ray Spectral Survey of WGACAT Quasars. I. Spectral Evolution and Low-Energy Cutoffs". The Astrophysical Journal. 492 (1): 79–90. arXiv:astro-ph/9708049. Bibcode:1998ApJ...492...79F. doi:10.1086/305024. ISSN 0004-637X.
  7. ^ Turner, M. J. L.; Abbey, A.; Arnaud, M.; Balasini, M.; Barbera, M.; Belsole, E.; Bennie, P. J.; Bernard, J. P.; Bignami, G. F.; Boer, M.; Briel, U.; Butler, I.; Cara, C.; Chabaud, C.; Cole, R. (2001-01-01). "The European Photon Imaging Camera on XMM-Newton: The MOS cameras". Astronomy & Astrophysics. 365 (1): L27–L35. arXiv:astro-ph/0011498. Bibcode:2001A&A...365L..27T. doi:10.1051/0004-6361:20000087. ISSN 0004-6361.
  8. ^ Sambruna, R. M.; Tavecchio, F.; Ghisellini, G.; Donato, D.; Holland, S. T.; Markwardt, C. B.; Tueller, J.; Mushotzky, R. F. (2007-11-01). "Swift Observations of High-Redshift Radio-loud Quasars". The Astrophysical Journal. 669 (2): 884–892. arXiv:0707.2925. Bibcode:2007ApJ...669..884S. doi:10.1086/521694. ISSN 0004-637X.
  9. ^ Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R. D.; Bloom, E.; Bonino, R.; Brill, A.; Britto, R. J.; Bruel, P. (2022-06-01). "Incremental Fermi Large Area Telescope Fourth Source Catalog". The Astrophysical Journal Supplement Series. 260 (2): 53. arXiv:2201.11184. Bibcode:2022ApJS..260...53A. doi:10.3847/1538-4365/ac6751. ISSN 0067-0049.
  10. ^ Sowards-Emmerd, David; Romani, Roger W.; Michelson, Peter F.; Ulvestad, James S. (2004-07-01). "Blazar Counterparts for 3EG Sources at -40°". The Astrophysical Journal. 609 (2): 564–575. arXiv:astro-ph/0403692. Bibcode:2004ApJ...609..564S. doi:10.1086/421239. ISSN 0004-637X.
  11. ^ Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F. (1999-07-01). "The Third EGRET Catalog of High-Energy Gamma-Ray Sources". The Astrophysical Journal Supplement Series. 123 (1): 79–202. Bibcode:1999ApJS..123...79H. doi:10.1086/313231. hdl:2060/19980237754. ISSN 0067-0049.
  12. ^ Jolley, E. J. D.; Kuncic, Z.; Bicknell, G. V.; Wagner, S. (2009-12-01). "Accretion discs in blazars". Monthly Notices of the Royal Astronomical Society. 400 (3): 1521–1526. arXiv:0908.2337. Bibcode:2009MNRAS.400.1521J. doi:10.1111/j.1365-2966.2009.15554.x. ISSN 0035-8711.
  13. ^ Li, Shang; Xia, Zi-Qing; Liang, Yun-Feng; Liao, Neng-Hui; Fan, Yi-Zhong (2018-02-01). "Fast γ-Ray Variability in Blazars beyond Redshift 3". The Astrophysical Journal. 853 (2): 159. arXiv:1710.02904. Bibcode:2018ApJ...853..159L. doi:10.3847/1538-4357/aaa3fb. ISSN 0004-637X.
  14. ^ Sahakyan, N.; Israyelyan, D.; Harutyunyan, G. (2020-12-01). "A Multiwavelength Study of Distant Blazar PKS 0537-286". Astrophysics. 63 (4): 459–469. Bibcode:2020Ap.....63..459S. doi:10.1007/s10511-020-09650-3. ISSN 0571-7256.
  15. ^ Ajello, M.; Greiner, J.; Kanbach, G.; Rau, A.; Strong, A. W.; Kennea, J. A. (May 2008). "BAT X-Ray Survey. I. Methodology and X-Ray Identification". The Astrophysical Journal. 678 (1): 102–115. arXiv:0712.2885. Bibcode:2008ApJ...678..102A. doi:10.1086/529418. ISSN 0004-637X.
  16. ^ a b c d Sahakyan, N; Harutyunyan, G; Israyelyan, D. "Origin of multiwavelength emission from flaring high redshift blazar PKS 0537-286". academic.oup.com. Retrieved 2024-05-23.
  17. ^ Lott, B.; Escande, L.; Larsson, S.; Ballet, J. (2012-08-01). "An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data". Astronomy and Astrophysics. 544: A6. arXiv:1201.4851. Bibcode:2012A&A...544A...6L. doi:10.1051/0004-6361/201218873. ISSN 0004-6361.
  18. ^ Rani, B.; Lott, B.; Krichbaum, T. P.; Fuhrmann, L.; Zensus, J. A. (2013-09-01). "Constraining the location of rapid gamma-ray flares in the flat spectrum radio quasar 3C 273". Astronomy and Astrophysics. 557: A71. arXiv:1307.0854. Bibcode:2013A&A...557A..71R. doi:10.1051/0004-6361/201321440. ISSN 0004-6361.
  19. ^ Sahakyan, N.; Baghmanyan, V.; Zargaryan, D. (2018-06-01). "Fermi-LAT observation of nonblazar AGNs". Astronomy and Astrophysics. 614: A6. arXiv:1801.09381. Bibcode:2018A&A...614A...6S. doi:10.1051/0004-6361/201732304. ISSN 0004-6361.
  20. ^ Harrison, Fiona A.; Craig, William W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Kim, Yunjin; Kitaguchi, Takao; Koglin, Jason E.; Madsen, Kristin K. (2013-06-01). "The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission". The Astrophysical Journal. 770 (2): 103. arXiv:1301.7307. Bibcode:2013ApJ...770..103H. doi:10.1088/0004-637X/770/2/103. ISSN 0004-637X.
  21. ^ Middei, R.; Giommi, P.; Perri, M.; Turriziani, S.; Sahakyan, N.; Chang, Y. L.; Leto, C.; Verrecchia, F. (2022-08-01). "The first hard X-ray spectral catalogue of Blazars observed by NuSTAR". Monthly Notices of the Royal Astronomical Society. 514 (3): 3179–3190. arXiv:2205.05089. Bibcode:2022MNRAS.514.3179M. doi:10.1093/mnras/stac1185. ISSN 0035-8711.
  22. ^ Cash, W. (1979-03-01). "Parameter estimation in astronomy through application of the likelihood ratio". The Astrophysical Journal. 228: 939–947. Bibcode:1979ApJ...228..939C. doi:10.1086/156922. ISSN 0004-637X.
  23. ^ Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bogaert, G. (2010-02-01). "PKS 1502+106: A New and Distant Gamma-ray Blazar in Outburst Discovered by the Fermi Large Area Telescope". The Astrophysical Journal. 710 (1): 810–827. arXiv:0912.4029. Bibcode:2010ApJ...710..810A. doi:10.1088/0004-637X/710/1/810. ISSN 0004-637X.
  24. ^ Baghmanyan, V.; Gasparyan, S.; Sahakyan, N. (2017-10-01). "Rapid Gamma-Ray Variability of NGC 1275". The Astrophysical Journal. 848 (2): 111. arXiv:1709.03755. Bibcode:2017ApJ...848..111B. doi:10.3847/1538-4357/aa8c7b. ISSN 0004-637X.
  25. ^ Ghisellini, G.; Della Ceca, R.; Volonteri, M.; Ghirlanda, G.; Tavecchio, F.; Foschini, L.; Tagliaferri, G.; Haardt, F.; Pareschi, G.; Grindlay, J. (2010-06-01). "Chasing the heaviest black holes of jetted active galactic nuclei". Monthly Notices of the Royal Astronomical Society. 405 (1): 387–400. arXiv:0912.0001. Bibcode:2010MNRAS.405..387G. doi:10.1111/j.1365-2966.2010.16449.x. ISSN 0035-8711.
  26. ^ "Swift: News". swift.gsfc.nasa.gov. Retrieved 2024-05-23.